In Brief

The decisions most affecting the health and well-being of patients with diabetes are made by the patients themselves. Thus, technologies that target patient empowerment and behavior change are making a large impact on diabetes-related health outcomes. This article highlights a variety of technologies that encourage insulin dosing changes, provide motivation for checking blood glucose, organize blood glucose meter data, and motivate patients to lose weight. It includes discussion of several theories of patient engagement and health behavior change involving consumer-facing patient-centered technologies.

Effects of Consumer-Facing Technologies on Patient Engagement, Behavior Change, and Type 2 Diabetes-Related Health Outcomes

Jennifer Shine Dyer, MD, MPH

Diabetes is a unique chronic disease in which the decisions most affecting the health and well-being of patients are made by the patients themselves. This is the crucial reason that technologies that target patient/consumer engagement and behavior change are making a large impact on diabetes-related health outcomes.1

Numerous studies have confirmed the difficulty patients have with adherence to diabetes regimens.2,3 Thankfully, new technologies have been created to improve a variety of the specific difficulties that have been noted in relation to nonadherence to diabetes regimens. These technologies are often called “consumer-facing technologies,” in that they are hardware or software products that a businesses’ customers deal with directly.

This article highlights a variety of consumer-facing technologies that encourage glucose pattern management, motivate patients to perform self-monitoring of blood glucose (SMBG), organize SMBG data, and motivate patients to lose weight—all behaviors that have been shown to have significant effects on health outcomes for people with type 2 diabetes. Theories of patient engagement and health behavior change involving consumer-facing technologies will also be discussed in terms of their effects on type 2 diabetes-related health outcomes.

Technologies Encouraging Glucose Pattern Management

Daily SMBG (four to five times per day) is especially important for patients with insulin-requiring diabetes to monitor for and prevent asymptomatic hypo- and hyperglycemia.4 The data provided by SMBG is the fuel needed for pattern management, or insulin dosing adjustment, that profoundly affects health outcomes in diabetes.

Pattern management is a systematic approach to help patients identify patterns in their blood glucose readings to determine whether changes are needed to optimize their glucose control.5 Evaluation of patients who were involved in the Diabetes Control and Complications Trial and followed after its completion showed that one of the five identified factors associated with lower A1C—a key health outcome quality indicator for patients with diabetes—was not glucose record-keeping alone, but rather whether individuals actually reviewed their SMBG records and made regimen adjustments based on principles including pattern management.4 Unfortunately, pattern management principles can be difficult for patients to fully comprehend despite extensive education.6

With the increasing shortages of primary care and specialist physicians, as well as reduced access to health care, some patients may never receive pattern management education.6 In addition, a majority of people with diabetes do not receive any structured
Technologies that Motivate Patients to Perform SMBG

In a study of insulin-using patients with type 2 diabetes, SMBG alone (without using its results to adjust therapy) was shown to lead to better health outcomes. However, sustained engagement is difficult.

Fogg’s Behavior Model (FBM), used frequently by consumer technology designers to sustain engagement with their online or mobile platforms, is now being applied to health technologies to sustain engagement with positive health behaviors such as performing SMBG. Within this model, three elements (motivation, ability, and trigger) must converge at the same moment when patients use a technology for a health behavior or outcome to occur. The model includes three core health behavior motivators (pleasure, hope, and acceptance); six health behavior ability factors that make the behavior simple to execute (time, money, physical effort, brain cycles, social deviance, and non-routine); and three health behavior triggers that remind users to perform the health behavior (spark, facilitator, and signal).

The EndoGoal application (or “app”), developed by the author, is one example of a consumer-facing mobile app that incorporates the three elements of the FBM. The main behavior focus of the EndoGoal app is self-entry glucose journaling, which can lead to financial rewards upon achievement of the designated goal of performing SMBG four times daily.

A motivating gaming feature that is a vital part of the EndoGoal app is a virtual pet dog named Cooper who is fed each time users check their glucose but remains hungry when they do not. This feature is similar to the well-known Japanese Tamagotchi digital pet toy that needed to be fed every 3 hours and involved user engagement based on appointment dynamic game mechanics theory. The ability feature of the EndoGoal app, as well as an additional motivating feature now under development, is the rewards points program that drives daily SMBG behavior and translates directly into prepaid Visa cards and purchasing power with several leading retailers. The trigger features in the app include individualized alarm reminders set by users, as well as barking reminders from the virtual dog, who will be hungry if an SMBG result has not been entered.

Enrollment in a clinical trial with 250 users, funded through crowdfunding, is ongoing. The study hypothesizes that engagement with the app will directly correlate with improved health outcomes for people with type 1 or insulin-requiring type 2 diabetes.

Bant is another diabetes-related mobile app for iPhones that similarly adheres to the FBM and uses an iTunes rewards system to which teens have been receptive. In a pilot study involving adolescents with type 1 diabetes, Bant use resulted in a 50% improvement in daily average frequency of blood glucose engagement. However, A1C did not change significantly. Future studies are planned for adults with type 2 diabetes.

The benefits of SMBG for patients with insulin-requiring type 2 diabetes are clear. However, there is no consensus regarding the optimal frequency and timing of SMBG for patients with type 2 diabetes who do not take insulin. A meta-analysis of daily SMBG testing in noninsulin-treated patients with type 2 diabetes concluded that some SMBG regimens were associated with an A1C reduction of 0.4%. However, many of the studies in this analysis were confounded by interventions that also included patient education with diet and exercise counseling and, in some cases, pharmacological intervention, thereby making it difficult to assess the specific contribution of SMBG to improved control. The cost-effectiveness and clinical
utility of daily blood glucose testing for patients with non-insulin regimens has also been questioned in several randomized trials. Therefore, it is unclear whether the above-mentioned technologies would affect health outcomes in patients with type 2 diabetes who are not on insulin therapy.

Technologies That Organize SMBG Data
Polonsky et al. showed that people who use organized glucose data, or “structured data,” gained more confidence in their diabetes care, used fewer test strips, and achieved lower A1C levels. With structured blood glucose monitoring, research subjects were taught to write down events that could affect their blood glucose control, such as exercise and changes in diet, along with blood glucose results from seven significant points—before and 2 hours after eating and at bedtime. The subjects and their health care providers were then taught how to interpret the SMBG data and identify patterns to best address any issues with their diabetes control.

The concept of structured monitoring is closely related to pattern management. Structured monitoring puts patients in charge of their diabetes, whereas mindless monitoring is just another job they must perform on top of all the other work diabetes requires of them. Following are a few examples of Food and Drug Administration–approved technologies that provide platforms for structured organization of blood glucose testing results to be presented to health care providers.

- iBGStar (Sanofi-Aventis, Bridgewater, N.J.) is an iPhone-specific glucose meter that provides structured data by connecting the meter to the iPhone to better organize the data through the accompanying iBGStar app.
- Glooko (Glooko, Palo Alto, Calif.) is a cable cord product that provides structured data by connecting a variety of different glucose meters directly to smartphones with an accompanying Glooko app.
- Diabetes Pal (Telcare, Bethesda, Md.) is a glucose meter that provides structured data via wireless transmission to the Diabetes Pal smartphone app, which provides space for recording food, medication, or other comments to be used for pattern management.

Technologies That Motivate Patients to Lose Weight
Traditional standard-of-care counseling methods for type 2 diabetes prevention and weight loss are primarily based on providing health knowledge only, without a theoretical base and in a fairly non-engaging manner. However, engaging interactive media technologies are now being used to complement the delivery of health care and education. These technologies have been shown to be beneficial in permanently changing over-nutrition–related behavior, which is strongly correlated with type 2 diabetes development, compared to delivery of health knowledge only through standard-of-care nutrition education programs in an obesity clinic.

One example is the ongoing Project Not Me study, which is assessing 300 adults with prediabetes in Pennsylvania and Tennessee. Project Not Me is a public-private collaboration among UnitedHealth Group, YMCA, Comcast, and the Centers for Disease Control and Prevention–led National Diabetes Prevention Program (NDPP). Its aim is to show that sustained health behavior change can occur through an intervention that engages patients by providing ongoing access to health information and weekly coaching via a reality-style TV show. Its hypothesis is that participants’ similar experiences will help them to achieve outcome goals similar to those demonstrated in the Diabetes Prevention Program: a nearly 60% reduction in risk for type 2 diabetes brought about by participants’ loss of 5–7% of their body weight and achievement of 150 minutes per week of moderate physical activity.

For 16 weeks, weekly episodes of the reality TV show can be viewed through Comcast TV’s On Demand service. The show follows six people who are at high risk for developing type 2 diabetes and who are following a diabetes prevention intervention designed by the NDPP. The show documents the subjects’ emotional ups and downs, physician visits, family tensions, and efforts to lose weight.

In addition to access to the TV show, Project Not Me provides online tools that correspond to the show to help viewers follow the same healthy steps undertaken by the six people followed in the show. Participation in the 12-month study is free and includes 16 weeks of TV show episodes, as well as weekly evaluations and coaching by the research team for the first 5 months. Participants also receive at the time of enrollment an electronic scale and information about mobile tracking or journaling apps, as well as mobile-integrated pedometers to track their physical activity. Participants are reassessed after 12 months. However, the TV show is available to anyone who wants to view it through Comcast On Demand.

Project Not Me hopes to demonstrate that people who are more engaged in daily decisions that affect their health and wellness can work to achieve a better health outcome and live a healthier life. More information about the study is available online at projectnotmedp.com.

When compared to face-to-face interaction and knowledge-based methods alone, interactive media technologies that incorporate a specific theoretical base in their design are a more comprehensive and influential method of influencing behavior. Project Not Me, for example, applies both social cognitive theory and technology to lifestyle-based diabetes prevention.

Social cognitive theory defines human behavior as a triadic, dynamic, and reciprocal interaction of personal factors, behavior, and the environment. According to this theory, individuals’ overall behavior is uniquely determined by the interplay among these three factors and is largely regulated through cognitive processes. Social cognitive theory also proposes that individuals’ knowledge acquisition, and thus behavior regulation, can be directly related to observing others within the context of relatable social interactions, experiences, and outside media influences. Thus, this theory can be easily applied in informative, interactive media platforms to influence overall health behavior.

Conclusion
Consumer-facing technologies that encourage individualized patient engagement specific to type 2 diabetes therapies and prevention are clearly in keeping with the recent American Diabetes Association/
European Association for the Study of Diabetes position statement recommending a patient-centered approach to care for adults with type 2 diabetes. Additional research is needed to confirm the effectiveness of such approaches in improving health outcomes for all patients with type 2 diabetes. However, diabetes health care professionals should consider learning more about these tools and recommending them as appropriate to patients with type 2 diabetes who may not be achieving their personal health goals because of a lack of engagement. A quote that has circulated widely in recent months on Twitter may summarize it best: “Patient engagement is the blockbuster drug of this century.”

References

Jennifer Shine Dyer, MD, MPH, is a physician in private practice at Central Ohio Pediatric Endocrinology and Diabetes Services in Columbus, Ohio.

Note of disclosure: Dr. Dyer is the founder and chief operating officer of EndoGoalApp in Columbus, Ohio.